If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-104x+236=0
a = 10; b = -104; c = +236;
Δ = b2-4ac
Δ = -1042-4·10·236
Δ = 1376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1376}=\sqrt{16*86}=\sqrt{16}*\sqrt{86}=4\sqrt{86}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-4\sqrt{86}}{2*10}=\frac{104-4\sqrt{86}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+4\sqrt{86}}{2*10}=\frac{104+4\sqrt{86}}{20} $
| -13x-14x-15x-16x=-13-14-15-16 | | -7×-17=4x+5 | | 3x(5-4)=13 | | 12-3m=5+4m | | x+432/x=48 | | 9m+5=3m+23 | | 2a/4-7=13 | | 5c+9=39 | | 7/42=10/x | | -2x-4x×-15=-39 | | 7x-21=-56 | | 4y2+13y=12 | | 0,2x+x=185 | | 6(5z+8)=0 | | 2a^2-21=3 | | 10+47(2)=x | | 10+47x2=x | | 6=25t | | 2x/(5x/90)=36 | | 2a2=8a2 | | 1/5(25-10b)+19=1/3(9b-30)-11 | | -7y+18=-4(y+3) | | 11x+10=8+15x | | 2x+5/3x=1/4 | | -5(-1y+8)=65 | | -7y/7=8 | | E^(3x-6)=1 | | E^3x-6=1 | | Y=4x-15÷3 | | (1-x)(1-x)(1-x)=0.95 | | 1.01^x=4 | | 7^x=6x+1 |